COMBINATORICA Bolyai Society – Springer-Verlag

TRANSVERSALS IN UNIFORM HYPERGRAPHS WITH PROPERTY (p,2)

ALEXANDR V. KOSTOCHKA*

Dedicated to the memory of Paul Erdős

Received September 23, 1999

Let f(r,p,t) $(p>t\geq 1, r\geq 2)$ be the maximum of the cardinality of a minimum transversal over all r-uniform hypergraphs $\mathcal H$ possessing the property that every subhypergraph of $\mathcal H$ with p edges has a transversal of size t. The values of f(r,p,2) for p=3,4,5,6 were found in [1] and bounds on f(r,7,2) are given in [3]. Here we prove that $f(r,p,2)\leq 1.3\frac{r}{p^{0.5}-o(p^{0.5})}$ for large p and huge r.

1. Introduction

A transversal of a family \mathcal{F} of sets is a subset of $\bigcup_{F \in \mathcal{F}} F$ meeting all members of \mathcal{F} . The smallest cardinality $\tau(\mathcal{F})$ of a transversal of \mathcal{F} is called the transversal number of \mathcal{F} . For a hypergraph $\mathcal{H} = (V, \mathcal{E})$, a transversal is a transversal of \mathcal{E} .

Say that a family \mathcal{B} possesses the property (p,t) if $\tau(\mathcal{F}) \leq t$ for every $\mathcal{F} \subset \mathcal{B}$ with $|\mathcal{F}| = p$. Property (p,1) means that any p members of \mathcal{B} have a common element. Erdős, Hajnal, and Tuza [2] raised the following problem:

For given integers r, p, and t $(p>t\geq 1, r\geq 2)$, determine the largest value, f(r,p,t), of $\tau(\mathcal{F})$ taken over the class of r-uniform families \mathcal{F} possessing the property (p,t).

It is known that $f(r,p,1) = \lceil r/(p-1) \rceil$ (see, e.g. [5, Ex.13.25(b)]). For t > 1 the picture is less clear. Erdős, Fon-Der-Flaass, Kostochka, and Tuza [1]

Mathematics Subject Classification (2000): 05C65

^{*} This work was partially supported by the grant 99-01-00581 of the Russian Foundation for Fundamental Research and the Dutch–Russian Grant NWO-047-008-006.

determined the exact values of f(r, p, 2) for $3 \le p \le 6$ (in particular, f(r, 6, 2) = r) and proved the following general bounds.

Theorem A [1]. (i) For every
$$r, p$$
 and t , $f(r, p, t) > rp^{-1/t}$; (ii) for $r > p > 2^t$, $f(r, p, t) \le t \left[r(\lfloor p^{1/t} \rfloor - 1)^{-1} \right]$.

It appeared that for p=3,4,5,6, the 'worst' hypergraphs with property (p,2) are complete r-uniform hypergraphs, i.e. if h(r,p,t) is the maximum n such that the complete r-uniform hypergraph K_n^r possesses property (p,2), then $f(r,p,2)=\tau(K_{h(r,p,2)}^r)=h(r,p,2)-r+1$. The lower bound in Theorem A also was obtained from bounds on h(r,p,t). This suggested that $f(r,p,2)=\tau(K_{h(r,p,2)}^r)=h(r,p,2)-r+1$ for every p and large r, but this is not the case. It was proved in [3], that for $k\geq 10$, $f(4k,7,2)\geq 3k+1$ while the worst complete 4k-uniform hypergraph possessing property (7,2) has transversal number 3k. It was also shown in [3] that $f(r,7,2)\leq \lceil \frac{7r}{8} \rceil$.

In spite of the examples for f(r,7,2), Erdős thought that probably for large r and fixed p and t, complete r-uniform hypergraphs are 'close' to the 'worst' ones. The first problem in [1] was stated as follows:

Prove or disprove that $h(r,p,t) \ge (1-o(1))f(r,p,t) + r$ when r tends to infinity while p and t are fixed.

The aim of this paper is to supply evidence in favor of Erdős' insight for $t\!=\!2$. We prove

Theorem 1. If $p < 0.01r^{2/3}$, then

$$f(r, p, 2) \le \frac{3\sqrt{3}}{4} \frac{r}{\sqrt{p} - o(\sqrt{p})} \le 1.3 \frac{r}{\sqrt{p} - o(\sqrt{p})}.$$

Recall that Theorem A gives $\frac{r}{\sqrt{p}} < f(r, p, 2) \le \frac{2r}{\sqrt{p} - o(\sqrt{p})}$ and the lower bound is given by h(r, p, 2).

The structure of the paper is as follows. In the next section we prove (for completeness) a folklore lemma on covering edges of complete graphs, restate Theorem 1 in a form more convenient for the proof and start the proof. In Section 3, we derive useful properties of 'large' subfamilies of a hypothetical counterexample to the theorem, and in Section 4 finish the proof of the main result.

2. Preliminaries

The following result by Iwaniec and Pintz [4] will be helpful.

Lemma 1. [4] There exists n_0 such that for every real $x \ge n_0$, the interval $[x-x^{23/42},x]$ contains a prime number.

Lemma 2. Let $2r^{2/3} < f < r$. Then to cover all the edges of K_r by f-vertex subsets, $(r/f)^2 + o((r/f)^2)$ of those subsets suffice.

Proof. Let x = r/f be sufficiently large. Then by Lemma 1, there exists a prime $q \in [x+1,x+2x^{23/42}]$. Partition $V(K_r)$ into q^2+q+1 subsets V_1,\ldots,V_{q^2+q+1} of cardinalities $\lfloor \frac{r}{q^2+q+1} \rfloor$ and $\lceil \frac{r}{q^2+q+1} \rceil$. Let F_q be a projective plane of order q, whose lines are L_1,\ldots,L_{q^2+q+1} and points are v_1,\ldots,v_{q^2+q+1} . For $i=1,\ldots,q^2+q+1$, let L_i' be obtained from L_i by replacing every $v_j \in L_i$ by the set V_j . Then, by the construction, the sets L_1',\ldots,L_{q^2+q+1}' cover all the edges of K_r . Since $q \leq x+2x^{23/42} \leq r^{1/3}$, for each i,

$$\begin{split} |L_i'| & \leq (q+1) \left\lceil \frac{r}{q^2+q+1} \right\rceil < \frac{r(q+1)}{q^2+q+1} + q + 1 = \\ & = \frac{r}{q-1} - \frac{r(q+2)}{(q-1)(q^2+q+1)} + q + 1 \leq \frac{r}{x} + \left(q+1 - \frac{r(q+2)}{q^3-1}\right) \leq f + 0. \end{split}$$

Note that the number of sets is $q^2+q+1 \le (x+2x^{23/42})^2+x+2x^{23/42}+1=x^2+o(x^2)$. This proves the lemma.

The main result of the paper will be easier to prove in the following form.

Theorem 2. Let $10r^{2/3} < f < r$ and \mathcal{B} be a family of r-element sets. If $\tau(\mathcal{B}) > f$, then

(1)
$$\exists \mathcal{F} \subset \mathcal{B} \text{ such that } \tau(\mathcal{F}) > 2 \text{ and } |\mathcal{F}| \leq \frac{27}{16} \frac{r^2}{f^2} + o\left(\frac{r^2}{f^2}\right).$$

Since we are interested only in large f and r/f, we will prove Theorem 2 for r and f such that $\frac{f}{6}$ and $\frac{r}{48f}$ are integers. That would save us some floors and ceilings.

So, let \mathcal{B} be a family of r-element sets with $\tau(\mathcal{B}) > f$. In the next section we show that (1) holds if \mathcal{B} contains some subfamilies of special kinds.

3. Subfamilies of \mathcal{B} with large transversal number

For each family \mathcal{D} and set A, we denote

$$\mathcal{D}_A = \{ B \in \mathcal{D} \mid B \cap A = \emptyset \}.$$

Lemma 3. If there exists $\mathcal{B}' \subset \mathcal{B}$ with $\tau(\mathcal{B}') > f/3$ such that $|A_1 \cap A_2| \ge \frac{61r}{72}$ for every $A_1, A_2 \in \mathcal{B}'$, then (1) holds.

Proof of Lemma 3. Assume that such $\mathcal{B}' \subset \mathcal{B}$ exists. Fix $A \in \mathcal{B}'$. Let $\{A_1, \ldots, A_s\}$ be a minimum family of subsets of size f covering all pairs of elements of A. By Lemma 2, $s = (r/f)^2 + o((r/f)^2)$. Since $\tau(\mathcal{B}) > f$, for each $i = 1, \ldots, s$, there exists $H_i \in \mathcal{B}_{A_i}$.

Partition A into 3r/f parts A(j), $j=1,\ldots,3r/f$ of size f/3. Since $\tau(\mathcal{B}') > f/3$, for each $j=1,\ldots,3r/f$, there exists $B_j \in \mathcal{B}'_{A(j)}$. For every j, since under conditions of the lemma, $|B_j \setminus A| \leq \frac{11r}{72}$, we can partition $B_j \setminus A$ into $\frac{11r}{48f}$ parts $A_{i,j}$, $i=1,\ldots,\frac{11r}{48f}$ of size at most 2f/3. Since, for each i, $|A(j) \cup A_{i,j}| \leq f$, there exists $C_{i,j} \in \mathcal{B}_{A(j) \cup A_{i,j}}$.

Define $\mathcal{F} = \{A\} \cup \{B_j \mid j = 1, ..., 3r/f\} \cup \{C_{i,j} \mid i = 1, ..., \frac{11r}{48f}; j = 1, ..., 3r/f\} \cup \{H_i \mid i = 1, ..., s\}$. Then

$$|\mathcal{F}| \le 1 + \frac{3r}{f} + \frac{11r^2}{16f^2} + \left(\frac{r}{f}\right)^2 + o\left(\left(\frac{r}{f}\right)^2\right) = \frac{27r^2}{16f^2} + o\left(\frac{r^2}{f^2}\right).$$

Suppose that there are two elements α and β meeting all the members of \mathcal{F} . At least one of them (say α) belongs to A. If $\beta \in A$, too, then one of H_i is not covered. So, $\beta \notin A$. By construction, there exists $A(j), 1 \le j \le 3r/f$, such that $\alpha \in A(j)$. In order to cover B_j , it is necessary that $\beta \in B_j \setminus A$. Let $\beta \in A_{i,j}$. Then $\{\alpha,\beta\}$ does not meet $C_{i,j}$, a contradiction. This proves the lemma.

Lemma 4. If there exists $\mathcal{B}' \subset \mathcal{B}$ with $\tau(\mathcal{B}') > f/3$ such that

(2)
$$|A_1 \cap A_2 \cap A_3| \ge \frac{31}{40}r$$
 for every $A_1, A_2, A_3 \in \mathcal{B}'$,

then (1) holds.

Proof of Lemma 4. Assume that such $\mathcal{B}' \subset \mathcal{B}$ exists. Let $D_1, D_2 \in \mathcal{B}'$ be such that $|D_1 \cap D_2| = \min\{|A_1 \cap A_2| : A_1, A_2 \in \mathcal{B}'\}.$

Let $x = \frac{1}{r}|D_1 \cap D_2|$. If $x \ge \frac{61}{72}$, then by Lemma 3 we are done. Let

$$\frac{31}{40} \le x \le \frac{61}{72}.$$

Let $\{A_1, \ldots, A_s\}$ be a minimum family of subsets of size f covering all pairs of elements in $D_1 \cap D_2$. By Lemma 2, $s = (xr/f)^2 + o((r/f)^2)$. Since $\tau(\mathcal{B}) > f$, for each $i = 1, \ldots, s$, there exists $H_i \in \mathcal{B}_{A_i}$.

Partition $D_1 \cap D_2$ into $\left\lceil \frac{3xr}{f} \right\rceil$ parts $A(j), j = 1, \dots, \left\lceil \frac{3xr}{f} \right\rceil$ of size at most f/3. Since $\tau(\mathcal{B}') > f/3$, for each $j = 1, \dots, \left\lceil \frac{3xr}{f} \right\rceil$, there exists $B_j \in \mathcal{B}'_{A(j)}$. By (2), for every j,

$$|B_j \setminus (D_1 \cap D_2)| \le \frac{9r}{40}.$$

Partition every $B_j \setminus (D_1 \cap D_2)$ into at most $\left\lceil \frac{27r}{80f} \right\rceil$ parts $A_{k,j}, k = 1, \dots, \left\lceil \frac{27r}{80f} \right\rceil$ of size at most 2f/3. Since, for each $k, |A(j) \cup A_{k,j}| \leq f$, there exists $C_{k,j} \in \mathcal{B}_{A(j) \cup A_{k,j}}$.

Now for i = 1, 2, partition $D_i \setminus D_{3-i}$ into $\left\lceil \frac{2(1-x)r}{f} \right\rceil$ parts $A(j,i), j = 1, \ldots, \left\lceil \frac{2(1-x)r}{f} \right\rceil$ of size f/2. Since $\tau(\mathcal{B}) > f$, for each j_1, j_2 , there exists $B(j_1, j_2) \in \mathcal{B}_{A(j_1,1) \cup A(j_2,2)}$. Let

$$\mathcal{F} = \{D_1, D_2\} \cup \left\{ B_j \mid j = 1, \dots, \left\lceil \frac{3xr}{f} \right\rceil \right\}$$

$$\cup \left\{ C_{k,j} \mid k = 1, \dots, \left\lceil \frac{27r}{80f} \right\rceil; j = 1, \dots, \left\lceil \frac{3xr}{f} \right\rceil \right\}$$

$$\cup \left\{ B(j_1, j_2) \mid j_1, j_2 = 1, \dots, \left\lceil \frac{2(1-x)r}{f} \right\rceil \right\} \cup \{ H_i \mid i = 1, \dots, s \}.$$

Then

$$|\mathcal{F}| \le 2 + \left(1 + \frac{3rx}{f}\right) + \left(1 + \frac{3rx}{f}\right) \left(1 + \frac{27r}{80f}\right) + \left(1 + \frac{2(1-x)r}{f}\right)^2 + \left(\frac{xr}{f}\right)^2 + o\left(\left(\frac{r}{f}\right)^2\right) = \left(\frac{81x}{80} + 4(1-x)^2 + x^2\right) \frac{r^2}{f^2} + o\left(\frac{r^2}{f^2}\right).$$

Let $g(x) = \frac{81x}{80} + 4(1-x)^2 + x^2$. Since $\frac{31}{40} \le x \le \frac{61}{72}$, we have $g(x) \le \max\left\{g\left(\frac{31}{40}\right), g\left(\frac{61}{72}\right)\right\}$. Now,

$$g\left(\frac{61}{72}\right) = \frac{81 \cdot 61}{80 \cdot 72} + 4\left(\frac{11}{72}\right)^2 + \left(\frac{61}{72}\right)^2 \le 0.858 + 0.094 + 0.718 = 1.67 < \frac{27}{16},$$

$$g\left(\frac{31}{40}\right) = \frac{81 \cdot 31}{80 \cdot 40} + 4\left(\frac{9}{40}\right)^2 + \left(\frac{31}{40}\right)^2 = \frac{2511 + 648 + 1922}{3200} < 1.6 < \frac{27}{16}.$$

Suppose that there are two elements α and β meeting all the members of \mathcal{F} . At least one of them (say α) belongs to D_1 . Suppose first that $\alpha \in D_1 \cap D_2$, say $\alpha \in A(j)$. If $\beta \in D_1 \cap D_2$, too, then one of H_i is not covered. So, $\beta \notin D_1 \cap D_2$. In order to cover B_j , it is necessary that $\beta \in B_j \setminus (D_1 \cap D_2)$. Let $\beta \in A_{k,j}$. Then $\{\alpha, \beta\}$ does not meet $C_{k,j}$, a contradiction.

Thus, we may assume that $\alpha \in D_1 \setminus D_2$ and that $\beta \notin D_1 \cap D_2$ (otherwise we swap the roles of α and β). Then $\beta \in D_2 \setminus D_1$. If $\alpha \in A(j_1, 1)$ and $\beta \in A(j_2, 2)$, then $\{\alpha, \beta\}$ does not meet $B(j_1, j_2)$. This proves the lemma.

The following lemma has a similar proof.

Lemma 5. If there exists $\mathcal{B}' \subset \mathcal{B}$ with $\tau(\mathcal{B}') > f/3$ such that

(3)
$$|A_1 \cap A_2 \cap A_3 \cap A_4| \ge \frac{3r}{4}$$
 for every $A_1, A_2, A_3, A_4 \in \mathcal{B}'$,

then (1) holds.

Proof of Lemma 5. Assume that such $\mathcal{B}' \subset \mathcal{B}$ exists. Let $D_1, D_2, D_3 \in \mathcal{B}'$ be such that $|D_1 \cap D_2 \cap D_3| = \min\{|A_1 \cap A_2 \cap A_3| : A_1, A_2, A_3 \in \mathcal{B}'\}.$

Let $y = \frac{1}{r}|D_1 \cap D_2 \cap D_3|$. If $y \ge \frac{31}{40}$, then by Lemma 4 we are done. Let

$$\frac{3}{4} \le y \le \frac{31}{40}.$$

Let $\{A_1, \ldots, A_s\}$ be a minimum family of subsets of size f covering all pairs of elements in $D_1 \cap D_2 \cap D_3$. By Lemma 2, $s = (yr/f)^2 + o((r/f)^2)$. Since $\tau(\mathcal{B}) > f$, for each $i = 1, \ldots, s$, there exists $H_i \in \mathcal{B}_{A_i}$.

Partition $D_1 \cap D_2 \cap D_3$ into $\left\lceil \frac{3yr}{f} \right\rceil$ parts $A(j), j = 1, \dots, \left\lceil \frac{3yr}{f} \right\rceil$ of size at most f/3. Since $\tau(\mathcal{B}') > f/3$, for each $j = 1, \dots, \left\lceil \frac{3yr}{f} \right\rceil$, there exists $B_j \in \mathcal{B}'_{A(j)}$. By (3), for every j,

$$|B_j \setminus (D_1 \cap D_2 \cap D_3)| \le \frac{r}{4}.$$

Partition every $B_j \setminus (D_1 \cap D_2 \cap D_3)$ into at most $\left\lceil \frac{3r}{8f} \right\rceil$ parts $A_{k,j}, k = 1, \dots, \left\lceil \frac{3r}{8f} \right\rceil$ of size at most 2f/3. Since, for each $k, |A(j) \cup A_{k,j}| \leq f$, there exists $C_{k,j} \in \mathcal{B}_{A(j) \cup A_{k,j}}$.

Let $z = \frac{1}{r}(|D_1 \cap D_2| - |D_1 \cap D_2 \cap D_3|)$. For i = 1, 2, partition $D_i \setminus D_{3-i}$ into $\left\lceil \frac{2(1-y-z)r}{f} \right\rceil$ parts $A(j,i), j = 1, \ldots, \left\lceil \frac{2(1-y-z)r}{f} \right\rceil$ of size at most f/2. Since $\tau(\mathcal{B}) > f$, for each j_1, j_2 , there exists $B(j_1, j_2) \in \mathcal{B}_{A(j_1, 1) \cup A(j_2, 2)}$.

Finally, partition $D_1 \cap D_2$ into $\left\lceil \frac{2zr}{f} \right\rceil$ parts $M(j,1,2), j=1,\ldots, \left\lceil \frac{2zr}{f} \right\rceil$ of size at most f/2 and partition $D_3 \setminus (D_1 \cap D_2 \cap D_3)$ into $\left\lceil \frac{2(1-y)r}{f} \right\rceil$ parts $M(j,3), j=1,\ldots, \left\lceil \frac{2(1-y)r}{f} \right\rceil$ also of size at most f/2. Since $\tau(\mathcal{B}) > f$, for each j_1, j_2 , there exists $L(j_1, j_2) \in \mathcal{B}_{M(j_1, 1, 2) \cup M(j_2, 3)}$.

Let

$$\mathcal{F} = \{D_1, D_2, D_3\} \cup \left\{ B_j \mid j = 1, \dots, \left\lceil \frac{3yr}{f} \right\rceil \right\} \\ \cup \left\{ C_{k,j} \mid k = 1, \dots, \left\lceil \frac{3r}{8f} \right\rceil; j = 1, \dots, \left\lceil \frac{3yr}{f} \right\rceil \right\} \\ \cup \left\{ B(j_1, j_2) \mid j_1, j_2 = 1, \dots, \left\lceil \frac{2(1 - y - z)r}{f} \right\rceil \right\} \\ \cup \left\{ L(j_1, j_2) \mid j_1 = 1, \dots, \left\lceil \frac{2zr}{f} \right\rceil; j_2 = 1, \dots, \left\lceil \frac{2(1 - y)r}{f} \right\rceil \right\} \\ \cup \left\{ H_i \mid i = 1, \dots, s \right\}.$$

Then

$$\begin{aligned} |\mathcal{F}| &\leq 3 + \left(1 + \frac{3ry}{f}\right) + \left(1 + \frac{3ry}{f}\right) \left(1 + \frac{3r}{8f}\right) + \left(1 + \frac{2(1 - y - z)r}{f}\right)^2 + \\ &\left(1 + \frac{2zr}{f}\right) \left(1 + \frac{2(1 - y)r}{f}\right) + \left(\frac{yr}{f}\right)^2 + o\left(\left(\frac{r}{f}\right)^2\right) \\ &\leq \left(\frac{9y}{8} + 4(1 - y)^2 + y^2\right) \frac{r^2}{f^2} + o\left(\frac{r^2}{f^2}\right). \end{aligned}$$

Let $g(y) = \frac{9y}{8} + 4(1-y)^2 + y^2$. Since $\frac{3}{4} \le y \le \frac{31}{40}$, we have $g(y) \le \max\left\{g\left(\frac{3}{4}\right), g\left(\frac{31}{40}\right)\right\}$. Now,

$$g\left(\frac{3}{4}\right) = \frac{27}{32} + 4\left(\frac{1}{4}\right)^2 + \left(\frac{3}{4}\right)^2 = \frac{27}{32} + \frac{4}{16} + \frac{9}{16} = \frac{26.5}{16},$$

$$g\left(\frac{31}{40}\right) = \frac{9 \cdot 31}{8 \cdot 40} + 4\left(\frac{9}{40}\right)^2 + \left(\frac{31}{40}\right)^2 = \frac{1395 + 324 + 961}{1600} = 1.675 < \frac{27}{16}.$$

Suppose that there are two elements α and β meeting all the members of \mathcal{F} . At least one of them (say α) belongs to D_1 . Suppose first that $\alpha \in D_1 \cap D_2 \cap D_3$, say $\alpha \in A(j)$. If $\beta \in D_1 \cap D_2 \cap D_3$, too, then one of H_i is not covered. So, $\beta \notin D_1 \cap D_2 \cap D_3$. In order to cover B_j , it is necessary that $\beta \in B_j \setminus (D_1 \cap D_2 \cap D_3)$. Let $\beta \in A_{k,j}$. Then $\{\alpha, \beta\}$ does not meet $C_{k,j}$, a contradiction.

Thus, we may assume that $\alpha \in D_1 \setminus (D_2 \cap D_3)$ and that $\beta \notin D_1 \cap D_2 \cap D_3$. Suppose that $\alpha \in (D_1 \cap D_2) \setminus (D_1 \cap D_2 \cap D_3)$. Then $\beta \in D_3 \setminus (D_1 \cap D_2 \cap D_3)$. If say, $\alpha \in M(j,1,2)$ and $\beta \in M(j,3)$, then $\{\alpha,\beta\}$ does not meet $L(j_1,j_2)$.

Finally, assume that $\alpha \in D_1 \setminus D_2$ and that $\beta \notin D_1 \cap D_2$. Then $\beta \in D_2 \setminus D_1$. If $\alpha \in A(j_1, 1)$ and $\beta \in A(j_2, 2)$, then $\{\alpha, \beta\}$ does not meet $B(j_1, j_2)$. This proves the lemma.

It seems that the trick used in the proofs of Lemmas 4 and 5 does not work further, so we use a bit different twist.

Lemma 6. Suppose that there exists $\mathcal{B}'' \subset \mathcal{B}$ with $\tau(\mathcal{B}') > 2f/3$ such that

$$(4) |A_1 \cap \ldots \cap A_8| \ge 0.5 \text{for every} A_1, \ldots, A_8 \in \mathcal{B}''.$$

Then (1) holds.

Proof of Lemma 6. Assume that such $\mathcal{B}'' \subset \mathcal{B}$ exists. Let D_1 , D_2 , D_3 , $D_4 \in \mathcal{B}''$ be such that $|D_1 \cap \ldots \cap D_4| = \min\{|A_1 \cap \ldots \cap A_4|: A_1, A_2, A_3, A_4 \in \mathcal{B}''\}$. Let $y = \frac{1}{r}|D_1 \cap \ldots \cap D_4|$. If $y \geq 3/4$, then by Lemma 5 we are done. Let

$$\frac{1}{2} \le y \le \frac{3}{4}.$$

Let $\{A_1, \ldots, A_s\}$ be a minimum family of subsets of size f covering all pairs of elements in $D_1 \cap \ldots \cap D_4$. By Lemma 2, $s = (yr/f)^2 + o((r/f)^2)$. Since $\tau(\mathcal{B}) > f$, for each $i = 1, \ldots, s$, there exists $H_i \in \mathcal{B}_{A_i}$.

Assume first that there exists a set M with $|M| \le f/3$ such that for every $B_1, B_2, B_3, B_4 \in \mathcal{B}_M''$,

$$|(B_1 \cap \ldots \cap B_4) \setminus (D_1 \cap \ldots \cap D_4)| \ge r/4.$$

It follows then from (4) that for every $B_1, \ldots, B_4 \in \mathcal{B}_M''$,

$$|B_1 \cap \ldots \cap B_4| \ge r/2 + r/4 = 3r/4.$$

Since $\tau(\mathcal{B}''_M) > f/3$, Lemma 5 implies (1). Therefore, we may assume that for every M with $|M| \le f/3$, there exist $B^1_M, \ldots, B^4_M \in \mathcal{B}''_M$, such that for the set $S_M = (B^1_M \cap \ldots \cap B^4_M) \setminus (D_1 \cap \ldots \cap D_4)$ we have $|S_M| < r/4$.

Partition D_1 into 1+3r/f parts $A(j), j=1,\ldots,1+3r/f$ of size at most f/3 so that for $j=1,\ldots,\lceil 3ry/f\rceil, A(j)\subset D_1\cap\ldots\cap D_4$, and for $j=1+\lceil 3ry/f\rceil,\ldots,1+3r/f, A(j)\subset D_1\setminus (D_1\cap\ldots\cap D_4)$. Partition every $S_{A(j)}$ into at most $\frac{3r}{8f}$ parts A(j,i) of size at most 2f/3. Since $\tau(\mathcal{B})>f$, for every j and i, there exists $B(j,i)\in\mathcal{B}_{A(j)\cup A(j,i)}$. Define $\mathcal{F}=\{D_1,\ldots,D_4\}\cup\{H_i\mid i=1,\ldots,s\}\cup\{B_{A(j)}^k,|k=1,2,3,4;j=1,\ldots,1+3r/f\}\cup\{B(j,i)\mid i=1,\ldots,\frac{3r}{8f};j=1,\ldots,1+3r/f\}$. Then

$$|\mathcal{F}| \le 4 + \left(\frac{ry}{f}\right)^2 + \frac{12r}{f} + \frac{9r^2}{8f^2} + o\left(\left(\frac{r}{f}\right)^2\right) = \left(\frac{9}{8} + y^2\right)\frac{r^2}{f^2} + o\left(\frac{r^2}{f^2}\right).$$

Since y < 3/4, $|\mathcal{F}| \le \frac{27r^2}{16f^2} + o\left(\frac{r^2}{f^2}\right)$.

Suppose that there are two elements α and β meeting all the members of \mathcal{F} . At least one of them (say, α) belongs to D_1 (say, $\alpha \in A(j)$). Suppose first that $\alpha \in D_1 \cap \ldots \cap D_4$. If $\beta \in D_1 \cap \ldots \cap D_4$, too, then one of H_i is not covered. So, $\beta \notin D_1 \cap \ldots \cap D_4$. In order to cover $B^1_{A(j)}, \ldots, B^4_{A(j)}$, it is necessary that $\beta \in S_{A(j)}$. Let $\beta \in A(j,i)$. Then $\{\alpha,\beta\}$ does not meet B(j,i), a contradiction.

Thus, we may assume that $\alpha \in D_1 \setminus (D_1 \cap ... \cap D_4)$ and that $\beta \notin D_1 \cap ... \cap D_4$ (otherwise we swap the roles of α and β). Then again β must be in $S_{A(j)}$ and the pair $\{\alpha, \beta\}$ does not meet some B(j, i). This proves the lemma.

4. Proof of Theorem 2

Assume first that for every set M with $|M| \le f/3$, there exist $B_1, \ldots, B_{12} \in \mathcal{B}_M$ such that,

$$|B_1 \cap \ldots \cap B_{12}| \le \frac{3r}{8}.$$

Fix an arbitrary $B_0 \in \mathcal{B}$ and divide it into 3r/f parts $B_0(j)$, j = 1, ..., 3r/f of size f/3. By the assumption, for each j = 1, ..., 3r/f, we can choose

(5)
$$B_j^1, \dots, B_j^{12} \in \mathcal{B}_{B_0(j)}$$
 such that $|B_j^1 \cap \dots \cap B_j^{12}| \le \frac{3r}{8}$.

Divide $B_j^1 \cap \ldots \cap B_j^{12}$ into $\frac{9r}{16f}$ parts $A_{i,j}, i = 1, \ldots, \frac{9r}{16f}$ of size at most 2f/3. Since, for each $i, |B_0(j) \cup A_{i,j}| \leq f$, there exists $C_{i,j} \in \mathcal{B}_{B_0(j) \cup A_{i,j}}$.

Define

$$\mathcal{F} = \{B_0\} \cup \{B_j^k \mid k = 1, \dots, 12; \ j = 1, \dots, 3r/f\}$$
$$\cup \left\{C_{i,j} \mid i = 1, \dots, \frac{9r}{16f}; \ j = 1, \dots, 3r/f\right\}.$$

Clearly,
$$|\mathcal{F}| \le 1 + \frac{36r}{f} + \frac{9 \cdot 3r^2}{16f^2} = \frac{27r^2}{16f^2} + o\left(\frac{r^2}{f^2}\right)$$
.

Suppose that there are two elements α and β meeting all the members of \mathcal{F} . Some of them (say α) belongs to B_0 . By construction, there exists $B_0(j), 1 \leq j \leq 3r/f$, such that $\alpha \in B_0(j)$. In order to cover B_j^1, \ldots, B_j^{12} , it is necessary that $\beta \in B_j^1 \cap \ldots \cap B_j^{12}$. Let $\beta \in A_{i,j}$. Then $\{\alpha, \beta\}$ does not meet $C_{i,j}$, a contradiction. Therefore, the assumption was wrong.

For every set M with $|M| \le f/3$, let $y(M) = \min\{|A_1 \cap ... \cap A_{12}| : A_1,...,A_{12} \in \mathcal{B}_M\}$. Let M_0 with $|M_0| \le f/3$ be a set with $y = y(M_0) = \max\{y(M) | |M| \le f/3\}$. By above, $y \ge \frac{3r}{8}$.

Let $D_1, \ldots, D_8 \in \mathcal{B}_{M_0}$ be such that

$$z = |D_1 \cap \ldots \cap D_8| = \min\{|A_1 \cap \ldots \cap A_8|: A_1, \ldots, A_8 \in \mathcal{B}_{M_0}\}.$$

By Lemma 6, $y \le z \le r/2$.

CASE 1. There exists $M \subset D_1 \setminus (D_1 \cap ... \cap D_8)$ with $|M| \leq f/3$ such that for every $B_1, ..., B_4 \in \mathcal{B}_{M_0 \cup M}$,

$$|(B_1 \cap \ldots \cap B_4) \setminus (D_1 \cap \ldots \cap D_8)| \ge \frac{3r}{4} - y.$$

Then by the definition of y, for every $B_1, \ldots, B_4 \in \mathcal{B}_{M_0 \cup M}$,

$$|B_1 \cap \ldots \cap B_4| \ge y + \left(\frac{3r}{4} - y\right) = 3r/4.$$

Thus by Lemma 5, we are done.

CASE 2. For every $M \subset D_1 \setminus (D_1 \cap \ldots \cap D_8)$ with $|M| \leq f/3$, there exist $B_M^1, \ldots, B_M^4 \in \mathcal{B}_{M_0 \cup M}$, such that for the set $S_M = (B_M^1 \cap \ldots \cap B_M^4) \setminus (D_1 \cap \ldots \cap D_8)$ we have $|S_M| < \frac{3r}{4} - y$.

Partition D_1 into 1+3r/f parts A(j), $j=1,\ldots,1+3r/f$ of size at most f/3 so that for $j=1,\ldots,\lceil 3z/f\rceil$, $A(j)\subset D_1\cap\ldots\cap D_8$, and for $j=1+\lceil 3z/f\rceil,\ldots,1+3r/f$, $A(j)\subset D_1\setminus (D_2\cap\ldots\cap D_8)$. For $j=1+\lceil 3rz/f\rceil,\ldots,1+3r/f$, partition every $S_{A(j)}$ into at most $\left\lceil \frac{3(0.75r-y)}{2f}\right\rceil$ parts A(j,i) of size at most 2f/3. Since $\tau(\mathcal{B})>f$, for every j and i, there exists $B(j,i)\in\mathcal{B}_{A(j)\cup A(j,i)}$. For every $j=1,\ldots,\lceil 3z/f\rceil$, by the definition of y, there exist $B_j^1,\ldots,B_j^{12}\in\mathcal{B}_M$, such that for the set $T_j=B_j^1\cap\ldots\cap B_j^{12}$, we have $|T_j|\leq y$. Partition every T_j into at most $\left\lceil \frac{3y}{2f}\right\rceil$ parts A(j,i) of size at most 2f/3. Since $\tau(\mathcal{B})>f$, for every j and i, there exists $C(j,i)\in\mathcal{B}_{A(j)\cup A(j,i)}$.

Define $\mathcal{F} = \{D_1, \dots, D_8\} \cup \{B_{A(j)}^k, | k = 1, 2, 3, 4; j = 1 + \lceil 3z/f \rceil, \dots, 1 + 3r/f\} \cup \{B(j,i) | i = 1, \dots, \left\lceil \frac{3(0.75r - y)}{2f} \right\rceil; j = 1 + \lceil 3z/f \rceil, \dots, 1 + 3r/f\} \cup \{B_j^k, | k = 1, \dots, 12; j = 1, \dots \lceil 3z/f \rceil\} \cup \{C(j,i) | i = 1, \dots, \left\lceil \frac{3y}{2f} \right\rceil; j = 1, \dots \lceil 3z/f \rceil \}.$ Then

$$\begin{split} |\mathcal{F}| &\leq 8 + \left(\frac{12(r-z)}{f} + 4\right) + \left(\frac{3(r-z)}{f} + 1\right) \left\lceil \frac{3(0.75r-y)}{2f} \right\rceil + \left\lceil \frac{36z}{f} \right\rceil + \\ & \left\lceil \frac{3z}{f} \right\rceil \left\lceil \frac{3y}{2f} \right\rceil = \frac{9}{2}((r-z)(0.75r-y) + zy) \frac{1}{f^2} + o\left(\frac{r^2}{f^2}\right). \end{split}$$

Since the function $g(y,z) = \frac{9}{2}((r-z)(0.75r-y)+zy)$ is linear in z and $y \le z \le r/2$, we have $g(y,z) \le \max\{g(y,y),g(y,\frac{r}{2})\}$. Clearly,

$$g\left(y, \frac{r}{2}\right) = \frac{9}{2}\left(\frac{r}{2}(0.75r - y) + \frac{yr}{2}\right) = \frac{9}{2} \cdot \frac{3r^2}{8} = \frac{27r^2}{16}.$$

Consider $g(y,y) = \frac{9}{2}((r-y)(0.75r-y)+y^2)$. Since it is quadratic in y, it attains its maximum either at $y = \frac{3r}{8}$ or at $y = \frac{r}{2}$. But

$$g\left(\frac{3r}{8}, \frac{3r}{8}\right) = \frac{9}{2}\left(\frac{5r}{8} \cdot \frac{3r}{8} + \frac{9r^2}{64}\right) = \frac{27r^2}{16}$$

and

$$g\left(\frac{r}{2}, \frac{r}{2}\right) = \frac{9}{2}\left(\frac{r}{2} \cdot \frac{r}{4} + \frac{r^2}{4}\right) = \frac{27r^2}{16}.$$

Therefore, $|\mathcal{F}| \leq \frac{27r^2}{16f^2} + o\left(\frac{r^2}{f^2}\right)$.

Suppose that there are two elements α and β meeting all the members of \mathcal{F} . At least one of them (say α) belongs to D_1 . Then $\alpha \in A(j)$ for some j. If $1 \leq j \leq \lceil 3z/f \rceil$, then β must belong to $T_j = B_j^1 \cap \ldots \cap B_j^{12}$, say $\beta \in A(j,i)$. In this case $\{\alpha,\beta\}$ does not meet $C_{j,i}$, a contradiction. So, we may assume that $\lceil 3z/f \rceil + 1 \leq j \leq 3r/f$ (i.e., $\alpha \in D_1 \setminus (D_1 \cap \ldots \cap D_8)$) and that $\beta \notin D_1 \cap \ldots \cap D_8$. Then β must be in $S_{A(j)}$ and the pair $\{\alpha,\beta\}$ does not meet some B(j,i). This proves Theorem 2.

Remark. One can slightly improve the factor $\frac{27}{16}$ in (1) along the lines of the proofs. But it would make the proofs more complicated and it seems that to make the factor 1+o(1) one needs an additional idea.

References

- [1] P. Erdős, D. G. Fon-Der-Flaass, A. V. Kostochka, and Zs. Tuza: Small transversals in uniform hypergraphs, SIBerian Advances in Math., 2 (1992), 82–88.
- [2] P. Erdős, A. Hajnal, and Zs. Tuza: Local constraints ensuring small representing sets, *J. Combin. Theory, Ser. A*, **58** (1991), 78–84.
- [3] D. G. Fon-Der-Flaass, A. V. Kostochka, and D. R. Woodall: Transversals in uniform hypergraphs with property (7,2), *Discrete Math.*, **207** (1999), 277–284.
- [4] H. IWANIEC, J. PINTZ: Primes in short intervals, Monatsh. Math., 98 (1984), 115–143.
- [5] L. Lovász: Combinatorial Problems and Exercises, Akad. Kiadó, Budapest, 1979.

Alexandr V. Kostochka

Institute of Mathematics, Novosibirsk, 630090, Russia

and

University of Illinois, Urbana, IL 61801, USA

kostochk@math.uiuc.edu